Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Nat Commun ; 15(1): 3325, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637537

RESUMO

The effective flow of electrons through bulk electrodes is crucial for achieving high-performance batteries, although the poor conductivity of homocyclic sulfur molecules results in high barriers against the passage of electrons through electrode structures. This phenomenon causes incomplete reactions and the formation of metastable products. To enhance the performance of the electrode, it is important to place substitutable electrification units to accelerate the cleavage of sulfur molecules and increase the selectivity of stable products during charging and discharging. Herein, we develop a single-atom-charging strategy to address the electron transport issues in bulk sulfur electrodes. The establishment of the synergistic interaction between the adsorption model and electronic transfer helps us achieve a high level of selectivity towards the desirable short-chain sodium polysulfides during the practical battery test. These finding indicates that the atomic manganese sites have an enhanced ability to capture and donate electrons. Additionally, the charge transfer process facilitates the rearrangement of sodium ions, thereby accelerating the kinetics of the sodium ions through the electrostatic force. These combined effects improve pathway selectivity and conversion to stable products during the redox process, leading to superior electrochemical performance for room temperature sodium-sulfur batteries.

2.
Invest Ophthalmol Vis Sci ; 65(3): 26, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38502137

RESUMO

Purpose: Nocardia keratitis is a serious and sight-threatening condition. This study aims to reveal the virulence and antimicrobial resistance gene profile of Nocardia strains using whole genome sequencing. Methods: Whole-genome sequencing was performed on 23 cornea-derived Nocardia strains. Together with genomic data from the respiratory tract and the environment, 141 genomes were then utilized for phylogenetic and pan-genome analyses, followed by virulence and antibiotic resistance analysis. The correlations between virulence genes and pathogenicity were experimentally validated, including the characteristics of Nocardia colonies and clinical and histopathological evaluations of Nocardia keratitis mice models. Results: Whole-genome sequencing of 141 Nocardia strains revealed a mean of 220 virulence genes contributed to bacterial pathogenesis. The mce gene family analysis led to the categorization of strains from the cornea into groups A, B, and C. The colonies of group C had the largest diameter, height, and fastest growth rate. The size of corneal ulcers and the clinical scores showed a significant increase in mouse models induced by group C. The relative expression levels of pro-inflammatory cytokines (CD4, IFN-γ, IL-6Rα, and TNF-α) in the lesion area exhibited an increasing trend from group A to group C. Antibiotic resistance genes (ARGs) spanned nine distinct drug classes, four resistance mechanisms, and seven primary antimicrobial resistance gene families. Conclusions: Whole genome sequencing highlights the pathogenic role of mce gene family in Nocardia keratitis. Its distribution pattern may contribute to the distinct characteristics of the growth of Nocardia colonies and the clinical severity of the mice models.


Assuntos
Ceratite , Nocardia , Animais , Camundongos , Filogenia , Ceratite/genética , Sequenciamento Completo do Genoma , Antibacterianos/farmacologia , Nocardia/genética
3.
J Mater Chem B ; 12(13): 3209-3225, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497405

RESUMO

Photodynamic therapy (PDT) exhibits great application prospects in future clinical oncology due to its spatiotemporal controllability and good biosafety. However, the antitumor efficacy of PDT is seriously hindered by many factors, including tumor hypoxia, limited light penetration ability, and strong defense mechanisms of tumors. Considering that it is difficult to completely solve the first two problems, enhancing the lethality of antitumor PDT has become a good idea to extend its clinical application. Herein, we summarize the nanoplatform-involved strategies to effectively amplify the tumoricidal capability of current PDT and then discuss the present bottlenecks and prospects of the nanoplatform-based PDT sensitization strategies in tumor therapy. We hope this review will provide some references for others to design high-performance PDT nanoplatforms for tumor therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/terapia
4.
Cell Signal ; 118: 111144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493883

RESUMO

Diabetic nephropathy (DN) is a serious complication of diabetes that causes glomerular sclerosis and end-stage renal disease, leading to ascending morbidity and mortality in diabetic patients. Excessive accumulation of aberrantly modified proteins or damaged organelles, such as advanced glycation end-products, dysfunctional mitochondria, and inflammasomes is associated with the pathogenesis of DN. As one of the main degradation pathways, autophagy recycles toxic substances to maintain cellular homeostasis and autophagy dysregulation plays a crucial role in DN progression. MicroRNA (miRNA) and long non-coding RNA (lncRNA) are non-coding RNA (ncRNA) molecules that regulate gene expression and have been implicated in both physiological and pathological conditions. Recent studies have revealed that autophagy-regulating miRNA and lncRNA have been involved in pathological processes of DN, including renal cell injury, mitochondrial dysfunction, inflammation, and renal fibrosis. This review summarizes the role of autophagy in DN and emphasizes the modulation of miRNA and lncRNA on autophagy during disease progression, for the development of promising interventions by targeting these ncRNAs in this disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , RNA Longo não Codificante , Humanos , Nefropatias Diabéticas/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Rim/patologia , Autofagia/genética
5.
Chem Sci ; 15(9): 3262-3272, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425519

RESUMO

The precisely engineered structures of materials greatly influence the manifestation of their properties. For example, in the process of alkali metal ion storage, a carefully designed structure capable of accommodating inserted and extracted ions will improve the stability of material cycling. The present study explores the uniform distribution of self-grown carbon nanotubes to provide structural support for the conductive and elastic MXene layers of Ti3C2Tx-Co@NCNTs. Furthermore, a compatible electrolyte system has been optimized by analyzing the solvation structure and carefully regulating the component in the solid electrolyte interphase (SEI) layer. Mechanistic studies demonstrate that the decomposition predominantly controlled by FSI- leads to the formation of a robust inorganic SEI layer enriched with KF, thus effectively inhibiting irreversible side reactions and major structural deterioration. Confirming our expectations, Ti3C2Tx-Co@NCNTs exhibits an impressive reversible capacity of 260 mA h g-1, even after 2000 cycles at 500 mA g-1 in 1 M KFSI (DME), surpassing most MXene-based anodes reported for PIBs. Additionally, density functional theory (DFT) calculations verify the superior electronic conductivity and lower K+ diffusion energy barriers of the novel superstructure of Ti3C2Tx-Co@NCNTs, thereby affirming the improved electrochemical kinetics. This study presents systematic evaluation methodologies for future research on MXene-based anodes in PIBs.

6.
Transl Vis Sci Technol ; 13(2): 5, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329750

RESUMO

Purpose: To investigate the relationship between Acanthamoeba genotypes, clinical manifestations, and outcomes in Acanthamoeba keratitis (AK) patients. Methods: This retrospective study included 159 culture-confirmed AK patients. Patients' data were collected, including demographics, initial diagnosis, treatments, and clinical features. The genotype of Acanthamoeba was identified through sequencing the Diagnostic Fragment 3 (DF3) region in the small ribosomal subunit RNA genes. The phylogenetic tree was constructed using the ClustalW model and maximum likelihood method. Cases with "poor outcome" were defined based on specific clinical criteria, including corneal perforation, keratoplasty, other eye surgery, duration of anti-amoebic therapy ≥8.0 months, and final visual acuity ≤20/80. "Better outcome" cases were the remainder. The correlation between T4 subtypes, clinical phenotypes, and clinical prognosis were further analyzed. Results: In this study, AK was primarily attributed to the T4A genotype, with a positive correlation between geographical and genetic distances. The primary clinical associated with T4 subtypes was deep stromal infiltration. Results was also showed a significant association between T4 subtypes and clinical outcomes (P = 0.021). Further analysis revealed that T4C was closely associated with a better prognosis (P = 0.040) and T4D with worse outcomes (P = 0.013). Conclusions: In China, AK was predominantly caused by the T4A subtype. Geographical distance positively correlated with genetic distance. Clinical prognosis varied among different subtypes, notably in T4C and T4D. Translational Relevance: This study demonstrated the association between T4 subtypes and clinical phenotypes, as well as the effects of T4 subtypes on clinical prognosis.


Assuntos
Ceratite por Acanthamoeba , Humanos , Ceratite por Acanthamoeba/diagnóstico , Filogenia , Estudos Retrospectivos , Genótipo , China/epidemiologia
7.
BMC Ophthalmol ; 24(1): 56, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317063

RESUMO

BACKGROUND: To report the microbiological isolates, aetiology, complications, antibiotic susceptibilities, and clinical remission of dacryocystitis and canaliculitis in a prominent tertiary ophthalmic teaching and referral hospital located in northern China and to offer appropriate recommendations for preventing and formulating drug treatment strategies. METHODS: This prospective study recruited a total of 477 participants who had been diagnosed with either dacryocystitis or canaliculitis. The cohort comprised 307 patients with chronic dacryocystitis, 111 patients with acute dacryocystitis, and 59 patients with canaliculitis. Purulent discharge from the lacrimal duct was collected using a sterile swab and immediately subjected to microbial culture. Antimicrobial susceptibility testing was conducted following established protocols. All participants were scheduled for follow-up visits within 14 days after receiving antibiotic therapy. RESULTS: The present findings indicated that women exhibited a higher susceptibility to the condition, as evidenced by the occurrence of 367 cases in comparison to 110 cases among men. Among the 477 patients, definitive causes were established in 59 individuals, accounting for 12.4% of the patients. Additionally, ocular complications were reported by 132 patients, representing 27.7% of the total. Monocular involvement was observed in the majority of cases, with 402 out of 477 patients (84.3%) affected, while binocular involvement was present in 75 patients (15.7%). In total, 506 microbiological strains were recovered from 552 eyes, with Staphylococcus epidermidis (16.4%) being the most prevalent microorganism. Other predominant isolates included Corynebacterium macginleyi (9.1%), Staphylococcus aureus (5.1%), Streptococcus pneumoniae (4.9%), Haemophilus (4.4%), Propionibacterium acnes (3.5%), and Eikenella corrodens (3.1%). Among the 12 isolated fungi, Candida parapsilosis accounted for 66.7%. The susceptibility to antimicrobial agents tested in gram-negative bacilli (79.5%) was observed to be higher than that of anaerobic bacteria (76.7%) and gram-positive cocci (55.4%). With pharmacological therapy, the remission rate of acute dacryocystitis (72.7%) was found to be higher than that of canaliculitis (53.3%) and chronic dacryocystitis (42.3%). CONCLUSIONS: This study highlights the microbial spectrum of dacryocystitis and canaliculitis, particularly C.macginleyi, E.corrodens and C.parapsilosis, which are also more frequently isolated. Vancomycin and imipenem may be more effective treatment options. Most cases have an unknown aetiology, and essential preventive measures involve postoperative cleansing of the lacrimal passage following eye and nasal surgeries, as well as the proactive management of rhinitis.


Assuntos
Canaliculite , Dacriocistite , Aparelho Lacrimal , Masculino , Humanos , Feminino , Estudos Prospectivos , Dacriocistite/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Hospitais de Ensino
8.
BMC Med Genomics ; 17(1): 47, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317175

RESUMO

BACKGROUND: Mutations in fibrillin-1 (FBN1) are known to be associated with Marfan syndrome (MFS), an autosomal dominant connective tissue disorder. Most FBN1 mutations are missense or nonsense mutations. Traditional molecular genetic testing for the FBN1 gene, like Sanger sequencing, may miss disease-causing mutations in the gene's regulatory regions or non-coding sequences, as well as partial or complete gene deletions and duplications. METHODS: Next-generation sequencing, multiplex ligation-dependent probe amplification and gap PCR were conducted on two MFS patients to screen for disease-causing mutations. RESULTS: We identified two large deletions in FBN1 from two MFS patients. One patient had a 0.23 Mb deletion (NC_000015.9:g.48550506_48779360del) including 5'UTR-exon6 of FBN1. The other patient harbored a 1416 bp deletion (NC_000015.9:g.48410869_48412284del) affecting the last exon, exon 66, of the FBN1 gene. CONCLUSION: Our results expanded the number of large FBN1 deletions and highlighted the importance of screening for large deletions in FBN1 in clinical genetic testing, especially for those with the classic MFS phenotype.


Assuntos
Síndrome de Marfan , Reação em Cadeia da Polimerase Multiplex , Humanos , Testes Genéticos , Mutação , Síndrome de Marfan/genética , Síndrome de Marfan/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Fibrilina-1/genética , Adipocinas/genética
9.
Sci Rep ; 14(1): 4186, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378766

RESUMO

To achieve integrated resource utilization of graphite tailings to improve their water-holding capacity, river silt and cow dung powder were added to graphite tailings as organic matter improvers. Improver ratios were designed using 4 g cow dung powder and 20, 30, and 50 g river silt. Soil-water characterization tests were performed using a combined tensiometer and filter paper method based on optimum density measurements. Analysis of the influence of river silt dosing on the soil-water characteristic curves of improved graphite tailing specimens was performed with data fitting using the Van Genuchten model. Here, we investigated the effect of river silt dosing on the internal pore structure and water-holding capacity of modified graphite tailing samples and verified the applicability of the model to graphite tailings. Our results demonstrate that the organic matter improver incorporated into graphite tailings can improve the internal structural compactness of graphite tailings, improving the water holding capacity. With an increase in river silt dosage, the saturated water content is larger, and the residual water content increases and then decreases. When river silt dosage is 30 g, the residual water content is the highest at a value of 3.32%. The van Genuchten model was highly accurate for assessing the graphite tailings. With an increase in river silt doping, the internal pore space first decreased and then increased, and the internal structure gradually became compact and loosened. The internal structure was in the optimal state in the experimental study when the dosage of cow dung powder was 4 g and the dosage of river silt was 30 g. The water holding capacity was optimal at this time. The results of this study provide a theoretical foundation for graphite-tailing-based mine reclamation and play a guiding role in exploring the value of the hydraulic characteristic index parameters when applying graphite tailings engineering.

10.
Microb Cell ; 11: 29-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375207

RESUMO

Intratumoral microbiota can regulate the tumor immune microenvironment (TIME) and mediate tumor prognosis by promoting inflammatory response or inhibiting anti-tumor effects. Recent studies have elucidated the potential role of local tumor microbiota in the development and progression of lung adenocarcinoma (LUAD). However, whether intratumoral microbes are involved in the TIME that mediates the prognosis of LUAD remains unknown. Here, we obtained the matched tumor microbiome and host transcriptome and survival data of 478 patients with LUAD in The Cancer Genome Atlas (TCGA). Machine learning models based on immune cell marker genes can predict 1- to 5-year survival with relative accuracy. Patients were stratified into high- and low-survival-risk groups based on immune cell marker genes, with significant differences in intratumoral microbial communities. Specifically, patients in the high-risk group had significantly higher alpha diversity (p < 0.05) and were characterized by an enrichment of lung cancer-related genera such as Streptococcus. However, network analysis highlighted a more active pattern of dominant bacteria and immune cell crosstalk in TIME in the low-risk group compared to the high-risk group. Our study demonstrated that intratumoral microbiota-immune crosstalk was strongly associated with prognosis in LUAD patients, which would provide new targets for the development of precise therapeutic strategies.

11.
Ecotoxicol Environ Saf ; 272: 116020, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306816

RESUMO

Cadmium is a persistent heavy metal commonly found in aquatic ecosystems and has a strong toxic effect on organisms. The sensitivity of phytoplankton to environmental changes and its role as an indicator of aquatic ecosystem health have been well-established. However, the mechanisms by which phytoplankton respond to cadmium remain incompletely understood. In this study, we chose the typical planktonic diatom Cyclotella meneghiniana Kützing, by integrating physiological-biochemical data and transcriptome analysis, to reveal the molecular mechanisms of C. meneghiniana responing to cadmium. Under cadmium stress, the cell density and chlorophyll-a content of C. meneghiniana significantly decreased, while MDA content and SOD activity gradually increased. At 72 h of cadmium stress, we found that at this time point, cell abundance and physiological variation were very significant, therefore we selected 72 h for subsequent analysis. To better understand the cadmium stress response mechanisms of C. meneghiniana, a de novo transcriptome method was used to analyse C. meneghiniana under cadmium stress for 72 h, and 1704 (M vs. CK) and 4788 (H vs. CK) differentially expressed genes were found. Our results showed that the changes in gene expression were closely correlated to the physiological-biochemical changes. Although cadmium stress could promote the nitrogen metabolism pathway, ROS scavenging system, and photosynthesis. While, C. meneghiniana under medium and high concentrations of cadmium can also limit various intracellular metabolic pathways, such as the MAPK pathway and phosphatidylinositol metabolic pathway, and the degree of inhibition increases with the increase of stress concentration. In present study, the complete molecular mechanism of the planktonic diatom response to cadmium has been established, which provided important information for further studies on heavy metal pollutants and the multiple functional genes responsible for cadmium sensitivity and tolerance in planktonic diatoms.


Assuntos
Cádmio , Diatomáceas , Cádmio/metabolismo , Ecossistema , Transcriptoma , Fotossíntese , Plâncton , Fitoplâncton
12.
Adv Healthc Mater ; : e2303219, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198617

RESUMO

Irregular electrical impulses in atrium are the leading cause of atrial fibrillation (AF), resulting in fatal arrhythmia and sudden cardiac death. Traditional medication and physical therapies are widely used, but generally suffer problems in serious physical damage and high surgical risks. Flexible and soft implants have great potential to be a novel approach for heart diseases therapy. A conductive hydrogel-based mesh cardiac patch is developed for application in AF elimination. The designed mesh patch with rhombic-shaped structure exhibits excellent flexibility, surface conformability, and deformation compliance, making it fit well with heart surface and accommodate to the deformation during heart beating. Moreover, the mechanical elastic and shape-memory properties of the mesh patch enable a minimally invasive injection of the patch into living animals. The mesh patch is implanted on the atrium surface for one month, indicating good biocompatibility and stability. Furthermore, the conductive patch can effectively eliminate AF owing to the conductivity and high charge storage capability (CSC) of the hydrogel. The proposed scheme of cardiac bioelectric signal modulation using conductive hydrogel brings new possibility for the treatment of arrhythmia diseases.

13.
Small ; : e2310248, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234145

RESUMO

Interfering with intratumoral metabolic processes is proven to effectively sensitize different antitumor treatments. Here, a tumor-targeting catalytic nanoplatform (CQ@MIL-GOX@PB) loading with autophagy inhibitor (chloroquine, CQ) and glucose oxidase (GOX) is fabricated to interfere with the metabolisms of tumor cells and tumor-associated macrophages (TAMs), then realizing effective antitumor chemodynamic therapy (CDT). Once accumulating in the tumor site with the navigation of external biotin, CQ@MIL-GOX@PB will release Fe ions and CQ in the acid lysosomes of tumor cells, the latter can sensitize Fe ions-involved antitumor CDT by blocking the autophagy-dependent cell repair. Meanwhile, the GOX component will consume glucose, which not only generates many H2 O2 for CDT but also once again decelerates the tumor repair process by reducing energy metabolism. What is more, the release of CQ can also drive the NO anabolism of TAMs to further sensitize CDT. This strategy of multiple metabolic regulations is evidenced to significantly improve the antitumor effect of traditional CDT nanoagents and might provide a new sight to overcome the bottlenecks of different antitumor treatments.

14.
PhytoKeys ; 237: 23-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250523

RESUMO

During the investigation of the freshwater diatoms from Tibet, a monoraphid species was observed from a hot spring near Anduo County, located on a plateau in the central portion of Tibet. This species shares the diagnostic features of Crenotia, such as the valve bent along the transapical axis, striae uniseriate to biseriate from centre to the apices and areolae with special structures located at the end of each stria. We compared the morphological characters of this new species with the others in this genus and show it to be new; it is named Crenotiatibetiasp. nov. This species has small valves with slightly protracted ends with nearly capitate apices, lanceolate axial area, central area unilaterally expanded to the margin, striae uniseriate to biseriate, but, in some valves, the striae are only uniseriate. Areolae are round small to irregular in shape and, at the end of each stria, there is a horseshoe-shaped areola present. Observations of developing valves show all the striae begin biseriate, then they become covered by silica to form uniseriate striae. Comparisons are made amongst the species in this genus and with genera assigned to the Achnanthidiaceae.

15.
Biotechnol Biofuels Bioprod ; 17(1): 11, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282018

RESUMO

BACKGROUND: The increasingly severe salinization of the aquatic environment has led to serious damage to the habitats of aquatic organisms. Benthic diatoms are commonly employed as indicator species for assessing water quality and serve as a reflection of the overall health of the aquatic ecosystem. Nitzschia palea is a common diatom found in freshwater, with high oil content, rapid reproductive rate, and it is a commonly dominant species in various rivers. RESULTS: The results showed that after 4 days (d) of saline-alkali stress, the cell density and chlorophyll a content of Nitzschia palea reached their maximum values. Therefore, we selected Nitzschia palea under 4 d stress for Tandem Mass Tag (TMT) quantitative proteomic analysis to explore the molecular adaptation mechanism of freshwater diatoms under saline-alkali stress. Totally, 854 proteins were enriched, of which 439 differentially expressed proteins were identified. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular fractionation analysis revealed that these proteins were mainly enriched in the photosynthesis pathway, citric acid cycle (TCA cycle), fatty acid synthesis, and glutathione cycle. CONCLUSIONS: This study aims to reveal the physiological, biochemical and proteomic mechanisms of salt and alkali tolerance and molecular adaptation of Nitzschia palea under different saline-alkali concentrations. This study showed that Nitzschia palea is one candidate of the environmental friendly, renewable bioenergy microalgae. Meantime, Nitzschia palea reveals for the proteome of the freshwater and provides the basis, it became a model algal species for freshwater diatoms.

16.
Bioresour Technol ; 393: 130114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013030

RESUMO

Appropriate concentration of carbon dioxide (CO2) will promote algae growth and metabolism. Building upon this finding, the present study investigated the impact of different CO2 concentrations (5% and 20%) on the carbon sequestration capacity of E. gracilis through aeration culturing, employing a combination of physiological analyses and transcriptome analysis. The results demonstrated that under 5% CO2 concentration, the cell density of E. gracilis was 1.79 times higher than that achieved in an air culture condition, and the paramylon content of E. gracilis was found to be 6.18 times higher than that of the air group. Based on transcriptome analysis, the carbon metabolism of E. gracilis was discussed. Significant up-regulation expression of genes associated with carbon synthesis was validated by an increase in paramylon content. This study revealed that under 5% CO2 conditions, E. gracilis exhibited elevated growth rate and enhanced photosynthetic carbon assimilation efficiency.


Assuntos
Dióxido de Carbono , Euglena gracilis , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Euglena gracilis/genética , Euglena gracilis/metabolismo , Glucanos/metabolismo , Perfilação da Expressão Gênica
17.
Sci Total Environ ; 913: 169536, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38141986

RESUMO

Human activities have triggered biodiversity loss, often resulting in biotic homogenization, which poses a threat to human well-being. Nevertheless, the overall influence of diverse environmental stressors on intra- and inter-community diversity remains insufficiently elucidated. This study aimed to quantify and reveal the impact of environmental stressors on the alpha and beta diversities of benthic diatom communities in the Harbin urban river network during the summer and autumn of 2022 and spring of 2023. The marked seasonal variations observed in alpha and beta diversity indices highlighted the distinct community compositions. Nonetheless, varying types of urban water pollutants were the primary drivers of biotic homogenization in terms of both taxonomic and functional diversities and played a prominent role in steering diversity shifts. These pollutants indirectly led to biotic homogenization by altering water quality parameters and affecting the ecological dynamics of benthic diatom communities. Furthermore, diverse responses to stressors were identified in taxonomic and functional diversities, providing additional insights for understanding ecological shifts in communities. Taxonomic beta diversity was related to environmental filtering, whereas functional beta diversity resulted from stressor-spatial dimension interactions. Our study emphasises that relying solely on traditional water quality monitoring may not fully reveal the current state of river ecosystem protection, and the need to study the continuous changes in biodiversity across seasons in urban waterbodies from the perspective of various stressors is highlighted.


Assuntos
Diatomáceas , Ecossistema , Humanos , Monitoramento Ambiental , Biodiversidade , Qualidade da Água , Rios
18.
Small ; : e2307736, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009506

RESUMO

Herein, a drug-loading nanosystem that can in situ form drug depository for persistent antitumor chemotherapy and immune regulation is designed and built. The system (DOX@MIL-LOX@AL) is fabricated by packaging alginate on the surface of Doxorubicin (DOX) and lactate oxidase (LOX) loaded MIL-101(Fe)-NH2 nanoparticle, which can easily aggregate in the tumor microenvironment through the cross-linking with intratumoral Ca2+ . Benefiting from the tumor retention ability, the fast-formed drug depository will continuously release DOX and Fe ions through the ATP-triggered slow degradation, thus realizing persistent antitumor chemotherapy and immune regulation. Meanwhile, LOX in the non-aggregated nanoparticles is able to convert the lactic acid to H2 O2 , which will be subsequently decomposed into ·OH by Fe ions to further enhance the DOX-induced immunogenic death effect of tumor cells. Together, with the effective consumption of immunosuppressive lactic acid, long-term chemotherapy, and oxidation therapy, DOX@MIL-LOX@AL can execute high-performance antitumor chemotherapy and immune activation with only one subcutaneous administration.

19.
BMC Microbiol ; 23(1): 313, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891467

RESUMO

BACKGROUND: Traditionally, conventional microbiological culture methods have been used to detect pathogenic microorganisms in chronic osteomyelitis. However, these methods have been found to have a low detection rate, complicating the precise guidance of infection treatment. This study employed metagenomic next-generation sequencing (mNGS) to detect these microorganisms in chronic osteomyelitis with three main objectives: 1). Gain a deeper understanding of the composition of pathogenic microorganisms in chronic osteomyelitis. 2). Compare the microbial detection rates between mNGS and the standard culture methods used in laboratories to enhance the effectiveness of the traditional culture methods. 3). Explore the potential of mNGS in etiological diagnosis. METHODS: Fifty clinically confirmed intraoperative bone tissue samples of chronic osteomyelitis from January 2021 to December 2021 were collected and subjected to mNGS and microbiological testing, respectively. The orthopaedic surgeon combined clinical manifestations and related examinations to determine the causative pathogens. RESULTS: The culture method obtained 29 aerobic and parthenogenic anaerobic bacteria, 3 specific anaerobic bacteria, and 1 yeast-like fungus. Thirty-six aerobic and parthenogenic anaerobic bacteria, 11 specific anaerobic bacteria, and 1 yeast-like fungus were obtained by mNGS, and 2 Mycobacterium tuberculosis(MTB) strains were detected. However, there was no significant difference in the overall positive detection rate between mNGS and the culture method (P = 0.07), and the two were not statistically significant in detecting aerobic and partly anaerobic bacteria (P = 0.625). But, mNGS was significantly superior to culture in detecting anaerobic bacteria and Mycobacterium tuberculosis (P<0.05). CONCLUSIONS: The mNGS method has enhanced our understanding of the distribution of pathogenic microorganisms in chronic osteomyelitis. Traditional culture methods help isolate and cultivate aerobic and facultative anaerobic bacteria, and fungi, and are also utilized for antibacterial drug sensitivity tests. However, mNGS has shown superior capabilities in detecting anaerobic bacteria, MTB, and mixed infection bacteria. This finding offers invaluable guidance for improving laboratory microbial culture and detection conditions. Hence, mNGS should be judiciously used for chronic osteomyelitis, and PCR can be implemented for certain difficult-to-culture microorganisms, such as MTB.


Assuntos
Coinfecção , Mycobacterium tuberculosis , Osteomielite , Humanos , Saccharomyces cerevisiae , Sequenciamento de Nucleotídeos em Larga Escala , Osteomielite/diagnóstico , Antibacterianos , Metagenômica , Sensibilidade e Especificidade
20.
Org Biomol Chem ; 21(29): 5949-5952, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37449306

RESUMO

Here, an efficient leaving group-activated methylene alcohol strategy for the preparation of primary propargyl alcohols from terminal alkynes by employing the bulk industrial product rongalite as the C1 unit has been described. The reaction avoids the low-temperature reaction conditions and inconvenient lithium reagents required for the classical method of preparing primary propargylic alcohols. Preliminary mechanistic studies showed that the reaction may not proceed via formaldehyde intermediates, but through the direct nucleophilic attack of the terminal alkyne on the carbon atom of rongalite by activation through SO2- as a leaving group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...